Identification of Riemannian foliations on the tangent bundle via SODE structure
نویسندگان
چکیده مقاله:
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, sufficient conditions for the metric associated with the semispray S are obtained to extend to a bundle-like metric for the lifted foliation on TM. Thus, the lifted foliation converts to a Riemanian foliation on the tangent space which is adapted to the SODE structure. Particularly, the metrizability property of the semispray S is applied in order to induce SODE structure on transversals. Finally, some equivalent conditions are presented for the transversals to be totally geodesic.
منابع مشابه
identification of riemannian foliations on the tangent bundle via sode structure
the geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on tm. the metrizability of a given semispray is of special importance. in this paper, the metric associated with the semispray s is applied in order to study some types of foliations on the tangent bundle which are compatible with sode structure. indeed, suff...
متن کاملidentification of riemannian foliations on the tangent bundle via sode structure
the geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on tm. the metrizability of a given semispray is of special importance. in this paper, the metric associated with the semispray s is applied in order to study some types of foliations on the tangent bundle which are compatible with sode structure. indeed, suff...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
Multiplication on the Tangent Bundle
Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...
متن کاملTraces of Heat Operators on Riemannian Foliations
We consider the basic heat operator on functions on a Riemannian foliation of a compact, Riemannian manifold, and we show that the trace KB(t) of this operator has a particular asymptotic expansion as t → 0. The coefficients of t and of t(log t) in this expansion are obtainable from local transverse geometric invariants functions computable by analyzing the manifold in an arbitrarily small neig...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 3
صفحات 669- 688
تاریخ انتشار 2012-09-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023